ISOLATION AND STRUCTURE OF A β -LACTAMASE INHIBITOR FROM STREPTOMYCES

Sir:

It was found in our laboratories that *Strepto-myces fulvoviridis* MC696-SY2 produced two β -lactamase inhibitors¹⁾, designated as MC696-SY2-A and B. They strongly inhibit β -lactamases, but are extremely unstable. This communication describes the isolation and structural study of MC696-SY2-A, one of the inhibitors, which allowed us to assign structure I.

A broth filtrate was treated with Amberlite IRA-401 (SO4⁻⁻⁻ form) and MC696-SY2-A (I) was eluted with 2 M ammonium chloride followed by adsorption on active carbon and elution with 50% aqueous acetone. The ammonium salt was converted to a rather stable barium salt with Amberlite IR-120B (Ba++ form), affording brownish powder. The purification of the crude barium salt of I was achieved by the combination or repetition of column chromatography on ECTE-OLA-cellulose, Diaion HP-20 (a macroreticular resin), Sephadex LH-20, Sephadex G-25, Florisil and silica gel. The sodium salt of I was obtained from the purified barium salt by treatment with Dowex 50W-X4 (Na⁺ form). It gave an ID₅₀ to β-lactamase of Escherichia coli K-12 W3630R⁺₇₅ of 300 pg.1) The physical and chemical properties of the most purified barium and sodium salts of I are shown in Table 1. Although a tentative molecular formula was obtained for the salts, the content of oxygen remained ambiguously because of the difficulty of complete purification and unsuccessful preparation of the sample for a mass spectrum. However, the presence of O-sulfate or C-sulfonic acid was suggested from the IR spectrum and high-voltage paper electrophoresis.

The barium salt of I was easily hydrolyzed to a non- β -lactam compound (II) even at room temperature. A partial structure CH₃-CH-CH-CH-CH2-, an isolated trans-olefin and an acetyl group were shown by the ¹H-NMR spectrum of the barium salt of I. Each peak of the ¹H-NMR spectrum of II was observed as a doublet, suggesting that II is a mixture of diastereomers and a new additional proton appeared at $\delta 4.8 \sim 5.3$ (Table 2). Analysis of ¹³C-NMR spectra of I and II revealed that one of the olefinic carbons was transformed to sp^3 carbon (Table 3). This evidence strongly support that the conjugated double bond C2-C3 in the five-membered ring of I was converted into a N-C double bond as shown in Scheme 1. Hydrogenolysis of II with RANEY-Ni afforded compound III and N-acetylethyl amine which was identified by GC-MS (m/e 87). Compound III showed a positive ninhydrin test, suggesting the presence of a proline moiety and was treated with 1 N hydrogen chloride in metha-

	Barium salt	Sodium salt	
Appearance mp [\$\alpha]_2^2 Formula Analysis (%)	colorless powder gradually decomposed over $154^{\circ}C$ -109° (c 0.56, H ₂ O) $C_{13}H_{14}N_2O_9S_2\cdot Ba\cdot H_2O$ calcd. found 27.79 27.73	colorless powder gradually decomposed over $148^{\circ}C$ -110° (c 0.25, H ₂ O) $C_{13}H_{14}N_2O_9S_2\cdot Na_2\cdot 3H_2O$ calcd. found 30.83 31.00	
H N S Ba	2.87 3.33 4.99 4.82 24.45 23.80	3.98 3.98 5.53 5.26 12.66 12.08	
UV in H ₂ O (nm) IR in KBr (cm ⁻¹)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
TLC	Silica gel (butanol - methanol - water, 4: 1: 2): Rf 0.46 Cellulose (isopropyl alcohol - water, 7: 3): Rf 0.74		
High-voltage paper electrophoresis	Rm (<i>p</i> -toluenesulfonic acid): 0.66 (3,500 V, 15 minutes, formic acid - acetic acid - water, 1: 3: 36)		

Table 1. Properties of MC696-SY2-A

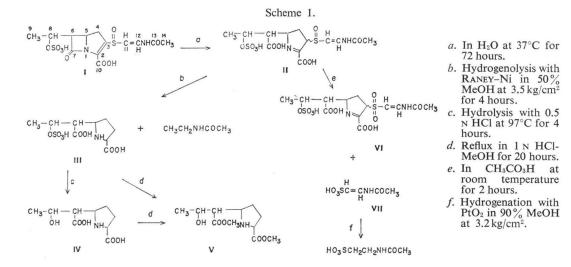


Table 2. Chemical shifts and coupling constants in ¹H-NMR spectra

Ductor	δ ppm (J Hz)					
Proton	I-Ba	II-Ba	III	IV	VII	
9-CH ₃	1.98 d (6)	1.94 d (6) 1.97 d (6)	1.92 d (6)	1.74 d (6)		
8-CH	5.38 m (6,8)	4.8~5.3	~ 5.2	4.47 m (6,10)		
6-CH	4.44 dd (6,8)	3.54	3.66 dd (7,8)	2.97 dd (9,10)		
5-CH	4.96 m (6,9,10)	4.8~5.3	4.52 m (7,8,10)	~4.3		
$4-CH_2$	3.53 dd (10,18) 3.98 dd (9,18)	2.7~3.2	2.4~2.8	~2.2 ~2.7		
11-CH	8.07 d (14)	7.90 d (14) 8.00 d (14)			7.96 d(14)	
12-CH	6.87 d (14)	6.50 d (14) 6.58 d (14)			6.64 d (14)	
14-CH ₃	2.60 s	2.62 s 2.64 s			2.60 s	
3-CH or 3-CH ₂		4.8~5.3	~2.8	~2.6		
2-CH			4.94 dd (7,8)	~4.6		

Spectra were measured in D₂O using TMS as the external reference.

nol to afford the hydrochloride of a dimethyl ester (V). The mass spectrum of V is compatible with the dimethyl ester (m/e 246.1323, M^++1 , calcd. for $C_{11}H_{20}NO_5$: m/e 246.1340) of 5-(1-carboxy-2-hydroxypropyl)-proline (IV), showing that the substituent at C_8 of I is O-sulfate and excluding the possibility of C-sulfonic acid.

The oxidation state of sulfur of the side chain at C₃ was decided as follows: Oxidation of **II** with peracetic acid afforded a sulfone derivative **VI** along with 2-acetamidoethenesulfonic acid (**VII**) which was introduced into N-acetyltaurine by catalytic hydrogenation. The UV spectra of II and VI showed almost the same characteristic absorption at λ_{max} 250 nm. Treatment of II with acetyl chloride and stannous chloride²⁾ afforded a reduced compound which showed a characteristic absorption for a conjugated sulfide compound, showing a λ_{max} at 230 and 300 nm. On the other hand, one of the isolated *trans*olefin protons is observed at *ca*. δ 8.0 for II and VI and at δ 7.57 for the sulfide compound, suggesting that such a shift to a lower field is due to the presence of an electron-attracting group. All the evidence mentioned above combined with the more stable form of the unsaturated sulfoxide

Conhor	Chemical shifts, δ (ppm)				
Carbon	I-Ba	II-Ba	III	VII	
10	177.7	178.2*	173.2* s		
13	173.5	173.6*		173.7 s	
7	166.1	169.4	172.6* s		
3	141.1*	72.3** 70.7**	28.1** t		
2	139.1*	$168.8 \\ 168.0$	60.9***d		
12	135.0	136.0 135.8		131.1 d	
11	112.1	$110.9 \\ 108.0$		113.9 d	
8	73.7	77.1** 76.8**	76.3 d		
5	59.0	70.7** 70.0**	60.6***d		
6	54.6	59.3 59.1	53.1 d		
4	29.6	25.4 24.7	27.9** t		
14	23.0	23.1		23.1 q	
9	19.1	19.5 18.6	19.6 q		

Table 3. Chemical shifts in ¹³C-NMR spectra

δ: ppm from TMS (internal dioxane, δ =67.4) in D₂O.

*, **, ***: Assignments within any vertical column may be reversed.

of cephalosporin chemistry³⁾ clearly suggest that the sulfoxide side chain is a more likely structure.

On this bases, the β -lactamase inhibitor named MC696-SY2-A is considered to have structure I. Recently, Beecham researchers reported independently that the β -lactam inhibitors MM 4550 and MM 13902 were co-produced by *Streptomyces olivaceus*⁴⁾. MM 4550 was assigned the same structure as I in the Patent literature.⁵⁾

KENJI MAEDA SAKIKO TAKAHASHI National Institute of Health, Japan Kamiosaki 2-chome, Shinagawa-ku, Tokyo Japan

Masaji Sezaki
Pharmaceutical Development
Laboratories
Meiji Seika Kaisha, Ltd.
Horikawa-cho, Saiwai-ku,
Kawasaki
Japan
Katsuharu Iinuma
Hiroshi Naganawa
SHINICHI KONDO
Masaji Ohno
Hamao Umezawa
Institute of Microbial Chemistry,
Kamiosaki 3-chome,
Shinagawa-ku, Tokyo
Japan
(Received July 18, 1977)

References

- UMEZAWA, H.; S. MITSUHASHI, M. HAMADA, S. IYOBE, S. TAKAHASHI, R. UTAHARA, Y. OSATO, S. YAMAZAKI, H. OGAWARA & K. MAEDA: Two β-lactamase inhibitors produced by a streptomyces. J. Antibiotics 26: 51~54, 1973
- KAISER, G. V.; R. D. G. COOPER, R. E. KOCH-LER, C. F. MURPHY, J. A. WEBBER, I. G. WRIGHT & E. M. VAN HEYNINGEN: Chemistry of cephalosporin antibiotics. XIX. Transformation of Δ²-cephem to Δ³-cephem by oxidation-reduction at sulfur. J. Org. Chem. 35: 2430~2433, 1970
- COOPER, R.D.G.; P.V. DEMARCO, C.F. MURPHY & L. A. SPANGLE: Chemistry of cephalosporin antibiotics. XVI. Configurational and conformational analysis of deacetoxy-Δ²- and -Δ³cephalosporins and their corresponding sulfoxide isomers by nuclear magnetic resonance. J. Chem. Soc. (C) 1970; 340~344, 1970
- BROWN, A. G.; D. BUTTERWORTH, M. COLE, G. HANSCOMB, J. D. HOOD & C. READING: Naturally-occurring β-lactamase inhibitors with antibacterial activity. J. Antibiotics 29: 668~ 669, 1976
- BUTTERWORTH, D.; M. COLE & J. D. HOOD: Antibiotics. British Patent No. 1,467,413, March 16, 1977